以编程方式管理提示
您可以使用 LangSmith Python 和 TypeScript SDK 以编程方式管理提示。
以前此功能存在于 langchainhub
包中,现已弃用。未来所有功能都将存在于 langsmith
包中。
安装包
在 Python 中,您可以直接使用 LangSmith SDK(推荐,功能完整),或者通过 LangChain 包使用(仅限于推送和拉取提示)。
在 TypeScript 中,您必须使用 LangChain npm 包来拉取提示(它也允许推送)。对于所有其他功能,请使用 LangSmith 包。
- Python
- LangChain (Python)
- TypeScript
pip install -U langsmith
# version >= 0.1.99
pip install -U langchain langsmith
# langsmith version >= 0.1.99 and langchain >= 0.2.13
yarn add langsmith langchain
// langsmith version >= 0.1.99 and langchain version >= 0.2.14
配置环境变量
如果您已经将 LANGSMITH_API_KEY
设置为 LangSmith 中当前工作区的 API 密钥,则可以跳过此步骤。
否则,通过导航到 LangSmith 中的 设置 > API 密钥 > 创建 API 密钥
获取您工作区的 API 密钥。
设置您的环境变量。
export LANGSMITH_API_KEY="lsv2_..."
我们所说的“提示”以前被称为“仓库”,因此代码中对“仓库”的任何引用都指的是提示。
推送提示
要创建新提示或更新现有提示,您可以使用 push prompt
方法。
- Python
- LangChain (Python)
- TypeScript
from langsmith import Client
from langchain_core.prompts import ChatPromptTemplate
client = Client()
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
url = client.push_prompt("joke-generator", object=prompt)
# url is a link to the prompt in the UI
print(url)
from langchain import hub as prompts
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
url = prompts.push("joke-generator", prompt)
# url is a link to the prompt in the UI
print(url)
import * as hub from "langchain/hub";
import { ChatPromptTemplate } from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromTemplate("tell me a joke about {topic}");
const url = hub.push("joke-generator", {
object: prompt,
});
// url is a link to the prompt in the UI
console.log(url);
您还可以将提示作为提示和模型的 RunnableSequence 推送。这对于存储您希望与此提示一起使用的模型配置很有用。提供商必须受 LangSmith Playground 支持。(在此处查看设置:支持的提供商)
- Python
- LangChain (Python)
- TypeScript
from langsmith import Client
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
client = Client()
model = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
chain = prompt | model
client.push_prompt("joke-generator-with-model", object=chain)
from langchain import hub as prompts
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
chain = prompt | model
url = prompts.push("joke-generator-with-model", chain)
# url is a link to the prompt in the UI
print(url)
import * as hub from "langchain/hub";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { ChatOpenAI } from "@langchain/openai";
const model = new ChatOpenAI({ model: "gpt-4o-mini" });
const prompt = ChatPromptTemplate.fromTemplate("tell me a joke about {topic}");
const chain = prompt.pipe(model);
await hub.push("joke-generator-with-model", {
object: chain
});
拉取提示
要拉取提示,您可以使用 pull prompt
方法,它将提示作为 langchain PromptTemplate
返回。
要拉取私有提示,您无需指定所有者句柄(尽管如果您已设置,也可以指定)。
要从 LangChain Hub 拉取公共提示,您需要指定提示作者的句柄。
- Python
- LangChain (Python)
- TypeScript
from langsmith import Client
from langchain_openai import ChatOpenAI
client = Client()
prompt = client.pull_prompt("joke-generator")
model = ChatOpenAI(model="gpt-4o-mini")
chain = prompt | model
chain.invoke({"topic": "cats"})
from langchain import hub as prompts
from langchain_openai import ChatOpenAI
prompt = prompts.pull("joke-generator")
model = ChatOpenAI(model="gpt-4o-mini")
chain = prompt | model
chain.invoke({"topic": "cats"})
import * as hub from "langchain/hub";
import { ChatOpenAI } from "@langchain/openai";
const prompt = await hub.pull("joke-generator");
const model = new ChatOpenAI({ model: "gpt-4o-mini" });
const chain = prompt.pipe(model);
await chain.invoke({"topic": "cats"});
与推送提示类似,您还可以将提示作为提示和模型的 RunnableSequence 拉取。只需在拉取提示时指定 include_model 即可。如果存储的提示包含模型,它将作为 RunnableSequence 返回。请确保您为正在使用的模型设置了正确的环境变量。
- Python
- LangChain (Python)
- TypeScript
from langsmith import Client
client = Client()
chain = client.pull_prompt("joke-generator-with-model", include_model=True)
chain.invoke({"topic": "cats"})
from langchain import hub as prompts
chain = prompts.pull("joke-generator-with-model", include_model=True)
chain.invoke({"topic": "cats"})
import * as hub from "langchain/hub";
import { Runnable } from "@langchain/core/runnables";
const chain = await hub.pull<Runnable>("joke-generator-with-model", { includeModel: true });
await chain.invoke({"topic": "cats"});
拉取提示时,您还可以指定特定的提交哈希或提示标签来拉取特定版本的提示。
- Python
- LangChain (Python)
- TypeScript
prompt = client.pull_prompt("joke-generator:12344e88")
prompt = prompts.pull("joke-generator:12344e88")
const prompt = await hub.pull("joke-generator:12344e88")
要从 LangChain Hub 拉取公共提示,您需要指定提示作者的句柄。
- Python
- LangChain (Python)
- TypeScript
prompt = client.pull_prompt("efriis/my-first-prompt")
prompt = prompts.pull("efriis/my-first-prompt")
const prompt = await hub.pull("efriis/my-first-prompt")
对于拉取提示,如果您使用的是 Node.js 或支持动态导入的环境,我们建议使用 langchain/hub/node
入口点,因为它会自动处理与您的提示配置关联的模型的反序列化。
如果您处于非 Node 环境中,则“includeModel”不支持非 OpenAI 模型,您应该使用基本的 langchain/hub
入口点。
不使用 LangChain 的提示
如果您想将提示存储在 LangSmith 中,但直接与模型提供商的 API 一起使用它们,您可以使用我们的转换方法。这些方法将您的提示转换为 OpenAI 或 Anthropic API 所需的负载。
这些转换方法依赖于 LangChain 集成包中的逻辑,除了您选择的官方 SDK 之外,您还需要安装相应的包作为依赖项。以下是一些示例:
OpenAI
- Python
- TypeScript
pip install -U langchain_openai
yarn add @langchain/openai @langchain/core
// @langchain/openai version >= 0.3.2
- Python
- TypeScript
from openai import OpenAI
from langsmith.client import Client, convert_prompt_to_openai_format
# langsmith client
client = Client()
# openai client
oai_client = OpenAI()
# pull prompt and invoke to populate the variables
prompt = client.pull_prompt("joke-generator")
prompt_value = prompt.invoke({"topic": "cats"})
openai_payload = convert_prompt_to_openai_format(prompt_value)
openai_response = oai_client.chat.completions.create(**openai_payload)
import * as hub from "langchain/hub";
import { convertPromptToOpenAI } from "@langchain/openai";
import OpenAI from "openai";
const prompt = await hub.pull("jacob/joke-generator");
const formattedPrompt = await prompt.invoke({
topic: "cats",
});
const { messages } = convertPromptToOpenAI(formattedPrompt);
const openAIClient = new OpenAI();
const openAIResponse = await openAIClient.chat.completions.create({
model: "gpt-4o-mini",
messages,
});
Anthropic
- Python
- TypeScript
pip install -U langchain_anthropic
yarn add @langchain/anthropic @langchain/core
// @langchain/anthropic version >= 0.3.3
- Python
- TypeScript
from anthropic import Anthropic
from langsmith.client import Client, convert_prompt_to_anthropic_format
# langsmith client
client = Client()
# anthropic client
anthropic_client = Anthropic()
# pull prompt and invoke to populate the variables
prompt = client.pull_prompt("joke-generator")
prompt_value = prompt.invoke({"topic": "cats"})
anthropic_payload = convert_prompt_to_anthropic_format(prompt_value)
anthropic_response = anthropic_client.messages.create(**anthropic_payload)
import * as hub from "langchain/hub";
import { convertPromptToAnthropic } from "@langchain/anthropic";
import Anthropic from "@anthropic-ai/sdk";
const prompt = await hub.pull("jacob/joke-generator");
const formattedPrompt = await prompt.invoke({
topic: "cats",
});
const { messages, system } = convertPromptToAnthropic(formattedPrompt);
const anthropicClient = new Anthropic();
const anthropicResponse = await anthropicClient.messages.create({
model: "claude-3-haiku-20240307",
system,
messages,
max_tokens: 1024,
stream: false,
});
列出、删除和点赞提示
您还可以使用 list prompts
、delete prompt
、like prompt
和 unlike prompt
方法列出、删除和点赞/取消点赞提示。有关这些方法的详细文档,请参阅 LangSmith SDK 客户端。
- Python
- TypeScript
# List all prompts in my workspace
prompts = client.list_prompts()
# List my private prompts that include "joke"
prompts = client.list_prompts(query="joke", is_public=False)
# Delete a prompt
client.delete_prompt("joke-generator")
# Like a prompt
client.like_prompt("efriis/my-first-prompt")
# Unlike a prompt
client.unlike_prompt("efriis/my-first-prompt")
// List all prompts in my workspace
import Client from "langsmith";
const client = new Client({ apiKey: "lsv2_..." });
const prompts = client.listPrompts();
for await (const prompt of prompts) {
console.log(prompt);
}
// List my private prompts that include "joke"
const private_joke_prompts = client.listPrompts({ query: "joke", isPublic: false});
// Delete a prompt
client.deletePrompt("joke-generator");
// Like a prompt
client.likePrompt("efriis/my-first-prompt");
// Unlike a prompt
client.unlikePrompt("efriis/my-first-prompt");