Observability 快速入门
本教程将通过演示如何将你的应用程序追踪到 LangSmith,帮助你快速开始使用我们的 observability SDK。
如果你已经熟悉 observability SDK,或者对追踪不仅仅是 LLM 调用感兴趣,你可以跳到后续步骤部分,或者查看操作指南。
1. 安装依赖
- Python
- TypeScript
pip install -U langsmith openai
yarn add langsmith openai
2. 创建 API 密钥
要创建 API 密钥,请前往 LangSmith 设置页面。然后点击 Create API Key(创建 API 密钥)。
3. 设置你的环境
- Shell
export LANGSMITH_TRACING=true
export LANGSMITH_API_KEY="<your-langsmith-api-key>"
# The example uses OpenAI, but it's not necessary if your code uses another LLM provider
export OPENAI_API_KEY="<your-openai-api-key>"
4. 定义你的应用
在本教程中,我们将instrument一个简单的 RAG 应用,但如果你愿意,可以随意使用你自己的代码 - 只要确保它有 LLM 调用!
应用代码
- Python
- TypeScript
from openai import OpenAI
openai_client = OpenAI()
# This is the retriever we will use in RAG
# This is mocked out, but it could be anything we want
def retriever(query: str):
results = ["Harrison worked at Kensho"]
return results
# This is the end-to-end RAG chain.
# It does a retrieval step then calls OpenAI
def rag(question):
docs = retriever(question)
system_message = """Answer the users question using only the provided information below:
{docs}""".format(docs="\n".join(docs))
return openai_client.chat.completions.create(
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": question},
],
model="gpt-4o-mini",
)
import { OpenAI } from "openai";
const openAIClient = new OpenAI();
// This is the retriever we will use in RAG
// This is mocked out, but it could be anything we want
async function retriever(query: string) {
return ["This is a document"];
}
// This is the end-to-end RAG chain.
// It does a retrieval step then calls OpenAI
async function rag(question: string) {
const docs = await retriever(question);
const systemMessage =
"Answer the users question using only the provided information below:\n\n" +
docs.join("\n");
return await openAIClient.chat.completions.create({
messages: [
{ role: "system", content: systemMessage },
{ role: "user", content: question },
],
model: "gpt-4o-mini",
});
}
5. 追踪 OpenAI 调用
你可能想要追踪的第一件事是所有 OpenAI 调用。LangSmith 通过 wrap_openai
(Python) 或 wrapOpenAI
(TypeScript) wrappers 使这变得容易。你所要做的就是修改你的代码以使用 wrapped client,而不是直接使用 OpenAI
client。
- Python
- TypeScript
from openai import OpenAI
from langsmith.wrappers import wrap_openai
openai_client = wrap_openai(OpenAI())
# This is the retriever we will use in RAG
# This is mocked out, but it could be anything we want
def retriever(query: str):
results = ["Harrison worked at Kensho"]
return results
# This is the end-to-end RAG chain.
# It does a retrieval step then calls OpenAI
def rag(question):
docs = retriever(question)
system_message = """Answer the users question using only the provided information below:
{docs}""".format(docs="\n".join(docs))
return openai_client.chat.completions.create(
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": question},
],
model="gpt-4o-mini",
)
import { OpenAI } from "openai";
import { wrapOpenAI } from "langsmith/wrappers";
const openAIClient = wrapOpenAI(new OpenAI());
// This is the retriever we will use in RAG
// This is mocked out, but it could be anything we want
async function retriever(query: string) {
return ["This is a document"];
}
// This is the end-to-end RAG chain.
// It does a retrieval step then calls OpenAI
async function rag(question: string) {
const docs = await retriever(question);
const systemMessage =
"Answer the users question using only the provided information below:\n\n" +
docs.join("\n");
return await openAIClient.chat.completions.create({
messages: [
{ role: "system", content: systemMessage },
{ role: "user", content: question },
],
model: "gpt-4o-mini",
});
}
现在,当你如下调用你的应用程序时
rag("where did harrison work")
这将在 LangSmith 的默认追踪项目中生成仅包含 OpenAI 调用的追踪。它应该看起来像这样。
6. 追踪整个应用
你还可以使用 [traceable
] 装饰器 (Python 或 TypeScript) 来追踪你的整个应用,而不仅仅是 LLM 调用。
- Python
- TypeScript
from openai import OpenAI
from langsmith import traceable
from langsmith.wrappers import wrap_openai
openai_client = wrap_openai(OpenAI())
def retriever(query: str):
results = ["Harrison worked at Kensho"]
return results
@traceable
def rag(question):
docs = retriever(question)
system_message = """Answer the users question using only the provided information below:
{docs}""".format(docs="\n".join(docs))
return openai_client.chat.completions.create(
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": question},
],
model="gpt-4o-mini",
)
import { OpenAI } from "openai";
import { traceable } from "langsmith/traceable";
import { wrapOpenAI } from "langsmith/wrappers";
const openAIClient = wrapOpenAI(new OpenAI());
async function retriever(query: string) {
return ["This is a document"];
}
const rag = traceable(async function rag(question: string) {
const docs = await retriever(question);
const systemMessage =
"Answer the users question using only the provided information below:\n\n" +
docs.join("\n");
return await openAIClient.chat.completions.create({
messages: [
{ role: "system", content: systemMessage },
{ role: "user", content: question },
],
model: "gpt-4o-mini",
});
});
现在,如果你如下调用你的应用程序
rag("where did harrison work")
这将生成仅包含整个 pipeline 的追踪(OpenAI 调用作为子运行)- 它应该看起来像这样
后续步骤
恭喜你!如果你已经走到这一步,那么你离成为 LangSmith observability 专家已经不远了。以下是你可能想要接下来探索的一些主题
或者你可以访问操作指南页面,了解关于你可以使用 LangSmith observability 做的一切。
如果你更喜欢视频教程,请查看 LangSmith 入门课程中的Tracing Basics 视频。