跳到主要内容

使用 LangChain (Python 和 JS/TS) 进行追踪

LangSmith 与 LangChain (PythonJS) 无缝集成,LangChain 是一个流行的开源框架,用于构建 LLM 应用程序。

安装

安装核心库和 Python 和 JS 的 OpenAI 集成(我们在下面的代码片段中使用 OpenAI 集成)。

有关可用软件包的完整列表,请参阅 LangChain Python 文档LangChain JS 文档

pip install langchain_openai langchain_core

快速开始

1. 配置您的环境

export LANGSMITH_TRACING=true
export LANGSMITH_API_KEY=<your-api-key>
# This example uses OpenAI, but you can use any LLM provider of choice
export OPENAI_API_KEY=<your-openai-api-key>

2. 记录追踪

无需额外的代码即可将追踪记录到 LangSmith。只需像往常一样运行您的 LangChain 代码即可。

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant. Please respond to the user's request only based on the given context."),
("user", "Question: {question}\nContext: {context}")
])
model = ChatOpenAI(model="gpt-4o-mini")
output_parser = StrOutputParser()

chain = prompt | model | output_parser

question = "Can you summarize this morning's meetings?"
context = "During this morning's meeting, we solved all world conflict."
chain.invoke({"question": question, "context": context})

3. 查看您的追踪

默认情况下,追踪将记录到名为 default 的项目。使用上述代码记录的追踪示例已公开,可以在此处查看。

选择性追踪

上一节展示了如何通过设置单个环境变量来追踪应用程序中 LangChain 可运行对象的所有调用。虽然这是一种方便的入门方式,但您可能只想追踪应用程序的特定调用或部分。

在 Python 中,有两种方法可以做到这一点:手动传入 LangChainTracer (参考文档) 实例作为回调,或使用 tracing_v2_enabled 上下文管理器 (参考文档)。

在 JS/TS 中,您可以传递 LangChainTracer (参考文档) 实例作为回调。

# You can configure a LangChainTracer instance to trace a specific invocation.
from langchain.callbacks.tracers import LangChainTracer

tracer = LangChainTracer()
chain.invoke({"question": "Am I using a callback?", "context": "I'm using a callback"}, config={"callbacks": [tracer]})

# LangChain Python also supports a context manager for tracing a specific block of code.
from langchain_core.tracers.context import tracing_v2_enabled
with tracing_v2_enabled():
chain.invoke({"question": "Am I using a context manager?", "context": "I'm using a context manager"})

# This will NOT be traced (assuming LANGSMITH_TRACING is not set)
chain.invoke({"question": "Am I being traced?", "context": "I'm not being traced"})

记录到特定项目

静态地

正如追踪概念指南中提到的,LangSmith 使用项目的概念来分组追踪。如果未指定,则追踪器项目设置为默认项目。您可以设置 LANGSMITH_PROJECT 环境变量来为整个应用程序运行配置自定义项目名称。这应在执行应用程序之前完成。

export LANGSMITH_PROJECT=my-project
JS 中的 SDK 兼容性

LANGSMITH_PROJECT 标志仅在 JS SDK 版本 >= 0.2.16 中受支持,如果您使用的是旧版本,请改用 LANGCHAIN_PROJECT

动态地

这在很大程度上建立在上一节的基础上,并允许您为特定的 LangChainTracer 实例设置项目名称,或者将其作为 Python 中 tracing_v2_enabled 上下文管理器的参数。

# You can set the project name for a specific tracer instance:
from langchain.callbacks.tracers import LangChainTracer

tracer = LangChainTracer(project_name="My Project")
chain.invoke({"question": "Am I using a callback?", "context": "I'm using a callback"}, config={"callbacks": [tracer]})

# You can set the project name using the project_name parameter.
from langchain_core.tracers.context import tracing_v2_enabled
with tracing_v2_enabled(project_name="My Project"):
chain.invoke({"question": "Am I using a context manager?", "context": "I'm using a context manager"})

向追踪添加元数据和标签

您可以通过在 Config 中提供任意元数据和标签来注释您的追踪。这对于将附加信息与追踪关联起来非常有用,例如执行追踪的环境或启动追踪的用户。有关如何按元数据和标签查询追踪和运行的信息,请参阅本指南

注意

当您将元数据或标签附加到可运行对象时(通过 RunnableConfig 或在运行时通过调用参数),它们将被该可运行对象的所有子可运行对象继承。

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful AI."),
("user", "{input}")
])
# The tag "model-tag" and metadata {"model-key": "model-value"} will be attached to the ChatOpenAI run only
chat_model = ChatOpenAI().with_config({"tags": ["model-tag"], "metadata": {"model-key": "model-value"}})
output_parser = StrOutputParser()

# Tags and metadata can be configured with RunnableConfig
chain = (prompt | chat_model | output_parser).with_config({"tags": ["config-tag"], "metadata": {"config-key": "config-value"}})

# Tags and metadata can also be passed at runtime
chain.invoke({"input": "What is the meaning of life?"}, {"tags": ["invoke-tag"], "metadata": {"invoke-key": "invoke-value"}})

自定义运行名称

您可以在调用或流式传输 LangChain 代码时,通过在 Config 中提供运行名称来自定义给定运行的名称。此名称用于在 LangSmith 中标识运行,并可用于过滤和分组运行。该名称也用作 LangSmith UI 中运行的标题。可以通过在构造时在 RunnableConfig 对象中设置 run_name,或者在 JS/TS 中的调用参数中传递 run_name 来完成此操作。

注意

LLM 对象目前不直接支持此功能。

# When tracing within LangChain, run names default to the class name of the traced object (e.g., 'ChatOpenAI').
configured_chain = chain.with_config({"run_name": "MyCustomChain"})
configured_chain.invoke({"input": "What is the meaning of life?"})

# You can also configure the run name at invocation time, like below
chain.invoke({"input": "What is the meaning of life?"}, {"run_name": "MyCustomChain"})

自定义运行 ID

您可以在调用或流式传输 LangChain 代码时,通过在 Config 中提供运行 ID 来自定义给定运行的 ID。此 ID 用于在 LangSmith 中唯一标识运行,并可用于查询特定运行。ID 可用于链接跨不同系统的运行或用于实施自定义跟踪逻辑。可以通过在构造时在 RunnableConfig 对象中设置 run_id,或者在 JS/TS 中的调用参数中传递 run_id 来完成此操作。

注意

LLM 对象目前不直接支持此功能。

import uuid

my_uuid = uuid.uuid4()
# You can configure the run ID at invocation time:
chain.invoke({"input": "What is the meaning of life?"}, {"run_id": my_uuid})

请注意,如果您在追踪的根目录执行此操作(即,顶层运行),则该运行 ID 将用作 trace_id

访问 LangChain 调用的运行 (span) ID

当您调用 LangChain 对象时,您可以访问调用的运行 ID。此运行 ID 可用于在 LangSmith 中查询运行。

在 Python 中,您可以使用 collect_runs 上下文管理器来访问运行 ID。

在 JS/TS 中,您可以使用 RunCollectorCallbackHandler 实例来访问运行 ID。

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.tracers.context import collect_runs

prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant. Please respond to the user's request only based on the given context."),
("user", "Question: {question}\n\nContext: {context}")
])
model = ChatOpenAI(model="gpt-4o-mini")
output_parser = StrOutputParser()

chain = prompt | model | output_parser

question = "Can you summarize this morning's meetings?"
context = "During this morning's meeting, we solved all world conflict."
with collect_runs() as cb:
result = chain.invoke({"question": question, "context": context})
# Get the root run id
run_id = cb.traced_runs[0].id
print(run_id)

确保在退出前提交所有追踪

在 LangChain Python 中,LangSmith 的追踪在后台线程中完成,以避免阻碍您的生产应用程序。这意味着您的进程可能会在所有追踪成功发布到 LangSmith 之前结束。这在无服务器环境中尤其普遍,在无服务器环境中,您的链或代理完成运行后,您的 VM 可能会立即终止。

您可以通过将 LANGCHAIN_CALLBACKS_BACKGROUND 环境变量设置为 "false" 来使回调同步。

对于这两种语言,LangChain 都公开了在退出应用程序之前等待追踪提交的方法。以下是一个示例

from langchain_openai import ChatOpenAI
from langchain_core.tracers.langchain import wait_for_all_tracers

llm = ChatOpenAI()
try:
llm.invoke("Hello, World!")
finally:
wait_for_all_tracers()

在不设置环境变量的情况下进行追踪

正如其他指南中提到的,以下环境变量允许您配置启用追踪、API 端点、API 密钥和追踪项目

  • LANGSMITH_TRACING
  • LANGSMITH_API_KEY
  • LANGSMITH_ENDPOINT
  • LANGSMITH_PROJECT

但是,在某些环境中,无法设置环境变量。在这些情况下,您可以以编程方式设置追踪配置。

这在很大程度上建立在上一节的基础上。

from langchain.callbacks.tracers import LangChainTracer
from langsmith import Client

# You can create a client instance with an api key and api url
client = Client(
api_key="YOUR_API_KEY", # This can be retrieved from a secrets manager
api_url="https://api.smith.langchain.com", # Update appropriately for self-hosted installations or the EU region
)

# You can pass the client and project_name to the LangChainTracer instance
tracer = LangChainTracer(client=client, project_name="test-no-env")
chain.invoke({"question": "Am I using a callback?", "context": "I'm using a callback"}, config={"callbacks": [tracer]})

# LangChain Python also supports a context manager which allows passing the client and project_name
from langchain_core.tracers.context import tracing_v2_enabled
with tracing_v2_enabled(client=client, project_name="test-no-env"):
chain.invoke({"question": "Am I using a context manager?", "context": "I'm using a context manager"})

使用 LangChain (Python) 进行分布式追踪

LangSmith 支持使用 LangChain Python 进行分布式追踪。这允许您链接跨不同服务和应用程序的运行(span)。其原理与 LangSmith SDK 的分布式追踪指南类似。

import langsmith
from langchain_core.runnables import chain
from langsmith.run_helpers import get_current_run_tree

# -- This code should be in a separate file or service --
@chain
def child_chain(inputs):
return inputs["test"] + 1

def child_wrapper(x, headers):
with langsmith.tracing_context(parent=headers):
child_chain.invoke({"test": x})

# -- This code should be in a separate file or service --
@chain
def parent_chain(inputs):

rt = get_current_run_tree()
headers = rt.to_headers()
# ... make a request to another service with the headers
# The headers should be passed to the other service, eventually to the child_wrapper function

parent_chain.invoke({"test": 1})

LangChain (Python) 和 LangSmith SDK 之间的互操作性

如果您在应用程序的一部分中使用 LangChain,而在其他部分中使用 LangSmith SDK(请参阅本指南),您仍然可以无缝地追踪整个应用程序。

当在 traceable 函数中调用 LangChain 对象时,将对其进行追踪,并将其绑定为 traceable 函数的子运行。

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

from langsmith import traceable

prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant. Please respond to the user's request only based on the given context."),
("user", "Question: {question}\nContext: {context}")
])
model = ChatOpenAI(model="gpt-4o-mini")
output_parser = StrOutputParser()

chain = prompt | model | output_parser

# The above chain will be traced as a child run of the traceable function
@traceable(
tags=["openai", "chat"],
metadata={"foo": "bar"}
)
def invoke_runnnable(question, context):
result = chain.invoke({"question": question, "context": context})
return "The response is: " + result

invoke_runnnable("Can you summarize this morning's meetings?", "During this morning's meeting, we solved all world conflict.")

这将生成以下追踪树:

LangChain.JS 和 LangSmith SDK 之间的互操作性

traceable 内部追踪 LangChain 对象(仅限 JS)

langchain@0.2.x 开始,LangChain 对象在 @traceable 函数内部使用时会自动追踪,并继承可追踪函数的客户端、标签、元数据和项目名称。

对于低于 0.2.x 的旧版本 LangChain,您需要手动传递从 @traceable 中找到的追踪上下文创建的 LangChainTracer 实例。

import { ChatOpenAI } from "@langchain/openai";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { StringOutputParser } from "@langchain/core/output_parsers";
import { getLangchainCallbacks } from "langsmith/langchain";

const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant. Please respond to the user's request only based on the given context.",
],
["user", "Question: {question}\nContext: {context}"],
]);
const model = new ChatOpenAI({ modelName: "gpt-4o-mini" });
const outputParser = new StringOutputParser();

const chain = prompt.pipe(model).pipe(outputParser);

const main = traceable(
async (input: { question: string; context: string }) => {
const callbacks = await getLangchainCallbacks();
const response = await chain.invoke(input, { callbacks });
return response;
},
{ name: "main" }
);

通过 traceable / RunTree API 追踪 LangChain 子运行(仅限 JS)

注意

我们正在努力改进 traceable 和 LangChain 之间的互操作性。将 LangChain 与 traceable 结合使用时,存在以下限制

  1. 修改从 RunnableLambda 上下文的 getCurrentRunTree() 获取的 RunTree 将导致无操作。
  2. 不建议遍历从 RunnableLambda 通过 getCurrentRunTree() 获取的 RunTree,因为它可能不包含所有 RunTree 节点。
  3. 不同的子运行可能具有相同的 execution_orderchild_execution_order 值。因此,在极端情况下,某些运行可能会以不同的顺序结束,具体取决于 start_time

在某些用例中,您可能希望将 traceable 函数作为 RunnableSequence 的一部分运行,或者通过 RunTree API 命令式地追踪 LangChain 运行的子运行。从 LangSmith 0.1.39 和 @langchain/core 0.2.18 开始,您可以直接在 RunnableLambda 中调用 traceable 包装的函数。

import { traceable } from "langsmith/traceable";
import { RunnableLambda } from "@langchain/core/runnables";
import { RunnableConfig } from "@langchain/core/runnables";

const tracedChild = traceable((input: string) => `Child Run: ${input}`, {
name: "Child Run",
});

const parrot = new RunnableLambda({
func: async (input: { text: string }, config?: RunnableConfig) => {
return await tracedChild(input.text);
},
});

Trace Tree

或者,您可以使用 RunTree.fromRunnableConfig 将 LangChain 的 RunnableConfig 转换为等效的 RunTree 对象,或者将 RunnableConfig 作为 traceable 包装函数的第一个参数传递。

import { traceable } from "langsmith/traceable";
import { RunnableLambda } from "@langchain/core/runnables";
import { RunnableConfig } from "@langchain/core/runnables";

const tracedChild = traceable((input: string) => `Child Run: ${input}`, {
name: "Child Run",
});

const parrot = new RunnableLambda({
func: async (input: { text: string }, config?: RunnableConfig) => {
// Pass the config to existing traceable function
await tracedChild(config, input.text);
return input.text;
},
});

如果您喜欢视频教程,请查看 LangSmith 课程简介中的其他追踪方式视频


此页内容是否对您有帮助?


您可以留下详细的反馈 在 GitHub 上.