跳到主要内容

如何在本地运行评估(beta,仅限 Python)

Beta

此功能仍处于 beta 阶段。

有时,在本地运行评估而不将任何结果上传到 LangSmith 会很有帮助。例如,如果您正在快速迭代 prompt 并想在一些示例上进行冒烟测试,或者如果您正在验证您的目标函数和评估器函数是否定义正确,您可能不想记录这些评估。

您可以通过使用 LangSmith Python SDK 并将 upload_results=False 传递给 evaluate() / aevaluate() 来做到这一点。

这将完全按照之前的运行方式运行您的应用程序和评估器,并返回相同的输出,但不会将任何内容记录到 LangSmith。这不仅包括实验结果,还包括应用程序和评估器 traces。

示例

让我们看一个例子

需要 langsmith>=0.2.0。示例还使用了 pandas

from langsmith import Client

# 1. Create and/or select your dataset
ls_client = Client()
dataset = ls_client.clone_public_dataset(
"https://smith.langchain.com/public/a63525f9-bdf2-4512-83e3-077dc9417f96/d"
)

# 2. Define an evaluator
def is_concise(outputs: dict, reference_outputs: dict) -> bool:
return len(outputs["answer"]) < (3 * len(reference_outputs["answer"]))

# 3. Define the interface to your app
def chatbot(inputs: dict) -> dict:
return {"answer": inputs["question"] + " is a good question. I don't know the answer."}

# 4. Run an evaluation
experiment = ls_client.evaluate(
chatbot,
data=dataset,
evaluators=[is_concise],
experiment_prefix="my-first-experiment",
# 'upload_results' is the relevant arg.
upload_results=False
)

# 5. Analyze results locally
results = list(experiment)

# Check if 'is_concise' returned False.
failed = [r for r in results if not r["evaluation_results"]["results"][0].score]

# Explore the failed inputs and outputs.
for r in failed:
print(r["example"].inputs)
print(r["run"].outputs)

# Explore the results as a Pandas DataFrame.
# Must have 'pandas' installed.
df = experiment.to_pandas()
df[["inputs.question", "outputs.answer", "reference.answer", "feedback.is_concise"]]
{'question': 'What is the largest mammal?'}
{'answer': "What is the largest mammal? is a good question. I don't know the answer."}

{'question': 'What do mammals and birds have in common?'}
{'answer': "What do mammals and birds have in common? is a good question. I don't know the answer."}
inputs.questionoutputs.answerreference.answerfeedback.is_concise
0最大的哺乳动物是什么?最大的哺乳动物是什么?是个好问题。我不知道答案。蓝鲸
1哺乳动物和鸟类有什么共同之处?哺乳动物和鸟类有什么共同之处?是个好问题。我不知道答案。它们都是温血动物

此页是否对您有帮助?


您可以留下详细的反馈 在 GitHub 上.